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Abstract

We state a duality theorem for disjunctive programming,
which generalizes to this class of problems the corresponding

result for linear programming.
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A NOTE ON
DUALITY IN DISJUNCTIVE PROGRAMMING
by

Egon Balas

1. Introduction.

A disjunctive programming problem is a linear programming problem with
disjunctive constraints. Mixed integer programs and many other nonconvex
programming problems can be stated in this form. One advantage of this
formulation is that it yields a variety of cutting planes with desirable
properties (see Refs. 1,...,4; and, for an early version, 5). Another one
is that it leads to nice theoretical characterizations: a disjunctive program
can be shown to be equivalent to a linear program; the family of all valid
inequalities can be described in terms of a scaled polar set; the facets of
the convex hull of fessible points are the extreme points or extreme half-
lines of this polar set; for a large family of disjunctive programs (which
includes the zero-one mixed integer program, the linear complementarity prob-
lem and other famjliar models), the convex hull of feasible points can be
generated sequentially, imposing the disjunctions of a conjunctive normal
form one by one (see Ref. 6).

In this note we state a duality theorem for disjunctive programs,

which generalizes to this class of problems the duality theorem of linear

programming.
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2. The Duality Theorem.

Consider the disjunctive program

'o = min cx

Ahx 2 bh
(P)
heQ x>0

where Ah is a matrix and bh & vector, ¥ heQ. The constraint set of (P) requires

X to satisfy at least one of the |Q| bracketed systems of inequalitfes,

We define the dual of (P) to be the problem

v-uhbh_<_0

D /\ hAh<¢
(D) heQ uld <
uhzo

The constraint set of (D) requires each uh, heQ, to satisfy the corresponding

bracketed system, and w to satisfy each of them.

Let
xh = {X'Ahx = bh' x > 0). ih - {xlAhx >0, x = 0};

Uh - {uhluhAh <e, “h >0}, ih = tuh'uhAh <0, uh > o}.

Further, let

o = (heq[x, # 8] , o « (heqlu, # #).
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We will assume the following

Regularity condition:

(Q* # 0, Q\Q** ¢ §) = Q*\Q** ¢ 9;

i.e., if (P) is feasible and (D) is infeasible, then there exists heQ such that
Xh ¢ 0, Uh = 0.
Theorem. Assume that (P) and (D) satisfy the regularity condition.

Then exactly one of the following two situations holds,
1. Both problems are feasible; each has an optimal solution and

Z =w .,
(o] o

2. One of the problems is infeasible; the other one either is
infeasible or has no finite optimum.

Proof. (1) Assume that both (P) and (D) are feasible. 1f (P) has no
finite minimum, then there exists heQ such that ig #0 and x ¢ ih such

that cx < 0. But then Uh =@, i.e., (D) 1is infeasible; a contradiction.

Thus (P) has an optimal solution, say x. Then the inequality cx > z

is a consequence of the constraint set of (P); 1.e., x ¢ xh implies cx > Z s

such that u"b" > 2 .

% heQ. But then for all heQ*, there exists uhCU -

h

Further, since (D) is feasible, for each he¢Q\Q* there exists thU and

h;
alnce xh - ® (for heQ\Q*), there alao exists thﬁh such that Ghbh > 0,
¥ heQ\Q*. But then, defining

W) = @+ aw, heg\or ,

for \ sufficiently large, uh(x)cuh. uh(k)bh 2z, ¥ heQ\Q*.
Hence for all heQ, there exist vectors uh satisfying the constraints

of (D) forw = z . To show that this is the maximal value of w, we note

that since x i# optimal for (P), there exists heQ such that

O -
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But then by linear programming duality,

cx = max{uhbh|uh¢Uh}
= max{w‘w - uhbh <0, uheUh]
> max{w| A (w - o> <0, uhcuh)}

heQ

fe,,wcz, and hence the maximum value of w is “w-s.

(ii) Assume that at least one of (P) and (D) is infeasible. If (P)
is infeasible, xh = @, ¥ heQ; hence for all heQ, there exists Ghea such

h
that 2" ~ 0.

If (D) is infeasible, we are done. Otherwise, for each heQ there
exists ﬁcUh. But then defining

uh(k) = Gh + A;h , heQ,

uh(k)cuh, heQ, for all A > 0, and since Ghbh > 0, ¥ heQ, w can be made

arbitrarily large by increasing \; i.e., (D) has no finite optimum,
Conversely, if (D) i{s infeasible, then either (P) is infeasible and

we are done, or else, from the regularity condition, Q*\Q** # f; and for

heQ*\Q** there exists X ¢ Xh and x ¢ ;' such that cx - 0. But then
1

is a feasible solution to (P) for any y > 0, and since ex < 0, z can be
made arbitrarily small by increasing u; i.e., (P) has no finite optimum.

.E.D.
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3. Discussion.

The above theorem asserts that either situation 1 or saftuation ? holds
for (P) and (D) if the regularity condition is satisfied. The following
Corollary shows that the condition is not only sufficient but also necessary.

Corollary: 1If the regularity condition does not hold, then if (P) is
feasible and (D) is infeasible, (P) has a finite minimum (i.e., there is a

"duality gap').

Proof. Let (P) be feasible, (D) infeasible, and Q*\Q** = §, 1.e.,
for every heQ*, let Uy # @. Then for each heO*, min{cxlx ¢ Xh} is finite,
hence (P) has a finite minimum. Q.E.D.

Remark. The theorem remains true if some of the variables of (P)

[of (D)] are unconstrained, and the corresponding constraints of (D) [of (P)]
are equalities.

The regularity condition can be expected to hold in all but some
rather peculiar situations. In linear programming duality, the case when
both the primal and the dual problem is infeasible only occurs for problems
whose coefficient matrix A has the rather special property that there exists
x # 0, u# 0, satisfying the homogeneous system

AX >0 , x>0

VA<<0 , u>0
(see reference 7 for a discussion of this and some equivalent conditions). In
this context, our regularity condition requires that, if the primal problem

is feasible and the dual is infeasible, then at least one of the matrices

A whose associated sets l% are infeasible, should not have the above
mentioned special property.
Though most problems satisfy this requirement, nevertheless there

are situations when the regularity condition breaks down, as {llustrated by

the following example.




Consider the disjunctive program

min -x1-2x2

-x1+x2 >0 -xl+x2 2> 0
P) X)X, > =2 V X, "X, >1
X)X, > 0 X)X, 20
and its dual
max w
w +2u; <. 0
-ui- u; < -1
(D) ui- u; < =2
w -ug <0
~udta) < -1
ui-ug < =2
u‘;_‘_(), L= 1,2 k= 1,2

The primal problem (P) has an optimal solution x = (0,2), with cx = -4,
whereas the dual problem (D) is infeasible. This is due to the fact that
Q\Q** = (2} and X, =9, U, =9, i.e., the regularity condition is violated.

Here
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The duality theorem discussed in this paper can be used to derive
strong lower bounds on the value of 5, in the context of a branch and
bound procedure. This is best done by using an appropriate relaxation of (P).
For instance, in the case of a zero-one program the relaxation may consist

of considering only one or two of the disjunctions x, = 0 or 1, the locally

3
most relevant ones. In that case the linear program (D) is of manageable
size; furthermore, (D) need not be solved completely, any feasible solution
to 1t provides a valid lower bound on the value of zo.

Another potential use is the derivation of strong cutting planes.

If (;,;) is any feasible solution to (D) and ah, jeN, are the columns of

i

is a valid cutting plane for (P) (see ref. 2).
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